On the entire self-shrinking solutions to Lagrangian mean curvature flow II

نویسندگان

چکیده

We prove the rigidity of entire graphic Lagrangian self-shrinkers in $$({\mathbb {R}}^{2n}, g_\tau )$$ , where $$g_\tau =\sin \tau \,\delta _0+\cos \,g_0$$ is a linear combination Euclidean metric $$\delta _0$$ and pseudo $$g_0=2\sum _i dx_idy_i$$ with $$\tau \in (0,\frac{\pi }{2})$$ complementing previous results for =0$$ =\frac{\pi }{2}$$ ; actually we obtain Bernstein theorems three corresponding nonlinear elliptic equations between Monge–Ampère equation ( ) special ). Moreover, find theorem fails when (-\frac{\pi }{4},0)$$ spacelike self-shrinker Minkowski spaces share this non-rigidity property.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entire Self-similar Solutions to Lagrangian Mean Curvature Flow

Abstract. We consider self-similar solutions to mean curvature evolution of entire Lagrangian graphs. When the Hessian of the potential function u has eigenvalues strictly uniformly between −1 and 1, we show that on the potential level all the shrinking solitons are quadratic polynomials while the expanding solitons are in one-to-one correspondence to functions of homogenous of degree 2 with th...

متن کامل

Lagrangian mean curvature flow for entire Lipschitz graphs II

We prove longtime existence and estimates for smooth solutions to a fully nonlinear Lagrangian parabolic equation with locally C1,1 initial data u0 satisfying either (1) −(1+ η)In ≤ Du0 ≤ (1+ η)In for some positive dimensional constant η, (2) u0 is weakly convex everywhere, or (3) u0 verifies a large supercritical Lagrangian phase condition. Mathematics Subject Classification (2000) Primary 53C...

متن کامل

Translating Solutions to Lagrangian Mean Curvature Flow

We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.

متن کامل

Rigidity of entire self-shrinking solutions to curvature flows

We show (a) that any entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the Euclidean metric is flat; (b) that any space-like entire graphic self-shrinking solution to the Lagrangian mean curvature flow in C with the pseudo-Euclidean metric is flat if the Hessian of the potential is bounded below quadratically; and (c) the Hermitian counterpart of (b) for the...

متن کامل

Lagrangian Mean Curvature Flow for Entire Lipschitz Graphs

We consider the mean curvature flow of entire Lagrangian graphs with Lipschitz continuous initial data. Assuming only a certain bound on the Lipschitz norm of an initial entire Lagrangian graph in R, we show that the parabolic equation (1.1) has a longtime solution which is smooth for all positive time and satisfies uniform estimates away from time t = 0. In particular, under the mean curvature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2022

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-022-02333-1